Multivariate Demand: Modeling and Estimation from Censored Sales

نویسنده

  • Catalina Stefanescu
چکیده

Demand modeling and forecasting is important for inventory management, retail assortment and revenue management applications. Current practice focuses on univariate demand forecasting, where models are built separately for each product. However, in many industries there is empirical evidence of correlated product demand. In addition, demand is usually observed in several periods during a selling horizon, and it may be truncated due to inventory constraints so that in practice only censored sales data are recorded. Ignoring the inter-product demand correlation or the serial correlation of demand from one selling period to the next leads to biased and inefficient estimates of the true demand distributions. In this paper we propose a class of models for multi-product multiperiod aggregate demand forecasting. We develop an approach for estimating the parameters of the demand models from censored sales data in a maximum likelihood framework using the Expectation-Maximization (EM) algorithm. Through a simulation study, we show that the algorithm is computationally attractive and leads to maximum likelihood estimates with good properties, under different demand and censoring scenarios. We exemplify the methodology with the analysis of two booking data sets from the entertainment and the airline industries, and show that the use of these models in a revenue management setting for airlines increases the revenue by up to 11% relative to the use of alternative demand forecasting methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demand Estimation from Censored Observations with Inventory Record Inaccuracy

A retailer cannot sell more than it has in stock; therefore its sales observations are a censored representation of the underlying demand process. When a retailer forecasts demand based on past sales observations, it requires an estimation approach that accounts for this censoring. Several authors have analyzed inventory management with demand learning in environments with censored observations...

متن کامل

Nonparametric Algorithms for Joint Pricing and Inventory Control with Lost-Sales and Censored Demand

We consider the classical joint pricing and inventory control problem with lost-sales and censored demand in which the customer’s response to selling price and the demand distribution are not known a priori, and the only available information for decision-making is the past sales data. Conventional approaches, such as stochastic approximation, online convex optimization, and continuum-armed ban...

متن کامل

Estimating True Demand in Airline’s Revenue Management Systems using Observed Sales

Forecasting accuracy is very important in revenue management. Improved forecast accuracy, improves the decision made about inventory and this lead to a greater revenue. In the airline’s revenue management systems, the inventory is controlled by changing the product availability. As a consequence of changing availability, the recorded sales become a censored observation of underlying demand, so ...

متن کامل

Closing the Gap: A Learning Algorithm for the Lost-Sales Inventory System with Lead Times

Introduction The periodic-review inventory control problem with lost-sales and positive lead times is one of the most fundamental yet notoriously difficult problems in the theory of inventory management (see Zipkin (2000)). The model assumes that unmet demand at the end of each period is lost, rather than being backlogged and carried over to the next period. For example, in many retail applicat...

متن کامل

Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales

In most retail environments, when inventory runs out, the unmet demand is lost and not observed. The sales data are effectively censored by the inventory level. Factoring this censored data effect into demand estimation and inventory control decision makes the problem difficult to solve. In this paper, we focus on developing bounds and heuristics for this problem. Specifically, we consider a fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009